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INPUT ADMITTANCE OF A RECTANGULAR 

WAVEGUIDE-FED APERTURE ANTENNA RADIATING INTO AN 

INHOMOGENEOUS LOSSY DIELECTRIC SLAB 

By Calvin T. Swift 
Langley Research Center 

SUMMARY 

The input admittance of a rectangular waveguide opening onto a perfectly con- 
ducting ground plane and covered with an inhomogeneous dielectric slab is formulated as 
a boundary-value problem. As a specific application of the solution, a plasma slab is 
considered. In the calculations, the plasma is assumed to be homogeneous except in the 
vicinity of the ground plane, where a local boundary layer of electron density occurs. 
Two ranges of collision frequencies are selected, and calculations are performed for the 
input admittance as a function of peak electron density and boundary-layer thickness. 
The numerical results show that a small boundary-layer reduction of electron dens* 
near the ground plane can significantly influence the input admittance of the antenna and - -  

causes a substantial 1oweri.g of the voltage reflection coefficient when the - plasma% 
overdeEe. 

INTRODUCTION 

The input admittance of a homogeneous plasma-covered rectangular waveguide-fed 
aperture antenna was  originally investigated by Galejs (ref. 1) and Villeneuve (ref. 2) 
and then by Compton (ref. 3). Although calculations have been available for a number of 
years, only recently have attempts been made to confirm experimentally these theoreti- 
cal results. Using a Langmuir probe to infer electron density, Taylor (ref. 4) placed a 
rectangular waveguide-fed aperture antenna into a shock tube and measured the voltage 
reflection coefficient as a function of electron density. Best preliminary data for over- 
dense plasmas resulted in a measured reflection coefficient which was  significantly 
lower than that predicted by homogeneous plasma calculations. Taylor concluded that 
the inconsistency was  due to a local boundary-layer reduction of electron density at the 
ground plane. This conjecture was supported by the results of Meltz, Freyheit, and 
Lustig (ref. 5). They had previously observed a discrepancy between theory and experi- 
ment &d attributed i t  to the presence of a thin glass wall between the cylindrical gap 
antenna and the plasma. 



These experimental observations suggested that some provision must be made in 
@e theory to account for variations of the dielectric constant near the antenna. This is 
done herein by considering the plasma as an inhomogeneous dielectric slab. The deriva- 
tion of the admittance expression closely follows the method given in reference 3. The 
fields are expressed in terms of their Fourier transforms, and the boundary-value 
problem is solved by assuming that the aperture field is the dominant waveguide mode. 
Parseval's theorem is then used to obtain an admittance expression, consisting of a 
double integration over made space, which must be numerically evaluated. The present 
formulation differs from that given in reference 3 in two respects. First, the fields are 
developed from single-component electric and magnetic vector potentials (instead of a 
two- component magnetic potential) and, second, the Helmholtz equation is numerically 
solved by utilizing the plane wave program of Swift and Evans (ref. 6). The numerical 
solution is required since the dielectric constant of the slab is assumed to be a compli- 
cated continuous function of one of the coordinates. 

c- 

Calculations are performed for the input admittance as a function of peak electron 

quency. It is concluded that a thin boundary layer over the antenna can have a profound. 
effect on the admittance and, indeed, reduces the reflection coefficient of the rectangular 
aperture covered with an overdense plasma. 

. density and boundary-layer thickness for moderate and low values of the collision fre- 

The special case of a homogeneous slab over the aperture is considered in the 
appendix. 
admittance integrals are tabulated into forms suitable for numerical evaluation. 

The excitation of surface waves in a nonlossy slab is discussed, and the 

SYMBOLS 

x electric vector potential 

A* magnetic vector potential 

a 

b 

short dimension of rectangular waveguide 

long dimension of rectangular waveguide 

input susceptance normalized with respect to 

speed of light in f ree  space 

Yol bin ( 
C 

E electric field intensity 
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f frequency 

f(P,Z) ,g(P,z) normalized Fourier transforms of vector potentials 

input conductance normalized with respect to Y 

surface-wave conductance normalized with respect to Y 

( 

magnetic field intensity 

wave number in f ree  space, w eOpO d- 
Cartesian components of wave number 

complex index of refraction 

electron density 

peak value of electron density 

power 

aperture voltage 

Cartesian coordinates 

input admittance 

characteristic admittance of f ree  space, J% 

characteristic admittance of the TEOl mode of the rectangular waveguide, 

transverse electric component of admittance with respect to 

'01) 
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YTM 

Yin 

=0 

0"p 

OqP 

Pn 

r 

E 

A0 

I-LO 

V 

@ 

cp* 

w 

P 

P,O 

w 

w 

transverse magnetic component of admittance normalized with respect ( 
to yo1) 

input admittance normalized with respect to Yo1) 

thickness of dielectric slab 

( 

attenuation constant of the plasma, 

polar components of k,/ko and %/&J 

surface wave pole 

voltage reflection coefficient 

permittivity 

wavelength in f ree  space, c/f 

permeability of f ree  space 

collision frequency 

electric scalar potential 

magnetic scalar potential 

frequency of propagation 

plasma frequency, 277 X 8.97 X 1 0 3 6  

peak plasma frequency 
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Subscripts : 

I in dielectric slab 

0 in free space 

i imaginary part  

r real part  

%Y,Z vector component in direction indicated by subscript 

Superscripts: 

I vector component in dielectric slab 

I1 vector component in f ree  space 

TE transverse electric 

TM transverse magnetic 

A double bar over a symbol indicates the double Fourier transform. A prime 
denotes the derivative with respect to the z-coordinate. An asterisk denotes complex 
conjugate except when used with magnetic potentials. 

THEORY 

The geometry of the problem is shown in figure 1. A rectangular waveguide, 
excited in the dominant TEOl mode, opens onto a perfectly conducting ground plane 
which is covered with an inhomogeneous dielectric slab. The dielectric constant of the 
slab is assumed to vary continuously in  the z-direction for 0 5 z 5 zo (region I), and 
air is assumed to f i l l  the remaining half space for z 2 zo (region II). 

a set  of vector potentials Az1911 and ( A ~ / E > ” ~ ,  such that 

It can be shown that the field components in both regions may be constructed from 
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where a time harmonic variation of the form ,-jut is implicit and the vector potentials 
in region I satisfy the partial differential equations 

The vector potentials A, and A; a re  those defined by Stratton (ref. 7). It should be 
noted that the scalar potentials C#J and $I* are eliminated by the Lorentz conditions 

a*, and jwpo4* = - a p) - . The structure is unbounded in the x-y plane; , jwpo‘ 4 = - 8, az E 
hence a solution to the potentials is given by (see, for example, ref. 8, p. 145) 
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where 

The roots of kZ1' chosen in accordance with the radiation condition at infinity a re  

If equations (3) a r e  substituted into equations (1) and the boundary conditions are 
applied at z = zo (Le., continuity of the transforms of H,, Hy, E,, and Ey), the 

ratios F1(zo) d(zo) , and their derivatives can then be determined. By defining 
FI1 ( ZO)' GII ( zo) 

I 
f(z) = and g(z) = a, the resultant boundary conditions a re  

+ O )  +O) 

where the roots of k:' a r e  given by equations (5). Equations (3) also reduce equa- 
tions (2) to 
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G1(z) where f(z) = h- and g(z) = 
FU(ZO) G=( 80)' 

Since equations (6) and (7) a r e  identical in form to the plane-wave expressions 
given by Swift and Evans in reference 6, the procedure given therein may be used to 
determine g(z), f(z), and their derivatives at any point in the slab as a function of /3, 
where ko2p2 = G2 + ky2. The fields in the inhomogeneous slab are therefore functions 

only of the mode constants GI1( zo) and FI1( zo) which can be solved by applying the 
boundary conditions at z = 0. 

If it is assumed that the total aperture field is the same as the incident TEOl 
waveguide mode, then the transform pair at the aperture is 

VO nY E, = a COS - 
b 

(Ey = 0) 1 - - s i n E ) c o s  2 '5b 

(?)[.2 - (kYb)-I2 

E, = 27rbV0 

From equations (1) and (8),  the boundary conditions at z = 0 therefore result in 
the following relationships: 

I1 which allows F (zo) and Gu(zo) to be expressed in terms of Vo, as follows 

sin(?) c o s g )  - jky 

2 f(O) 
FU(zo) = 27bV0 

(%2 + ky2) (2) 2 [7r2 - (kyb)] 

8 



Therefore, the transforms of all the field components at the aperture plane are known to 
within a constant Vo, which is implicit in the transform of Ex. By substituting equa- 
tions (10) into equations (l), the transform of Hy at z = 0 may be evaluated in terms 
of Ex. The result is 

- 

The complex conjugate of P at the aperture in terms of the field quantities in 
region I is given by 

a 
- *= I 
E, Hy dkxdky dx dy = - - 2 

aperture 

where the dual integral representation is a statement of Parseval's theorem (ref. 8, 
p. 458). 

The complex conjugate of P at the aperture in terms of the fields inside the 
waveguide is given by 

From continuity of power across the aperture, equations (11) and (12) give 

The substitution of equation (11) and the explicit form of Ex, as given by equations (8), 
into equation (14), leads to the following expression for the input admittance: 
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I 

where a transformation to polar coordinates has been made such that kx = kop cos a 
and ky = kop sin a. The values of g(p,O), g'(p,O), f(p,O), and f'(p,O) a r e  provided by 
the numerical integration of equations (7), subject to the initial conditions (6). 
admittance has been broken up into TM and TE components to denote that yTM is 
derived from the potential A, and that yTE is derived from the potential A;/E. If 
surface waves are excited, it is convenient to study yTM and yTE separately. (See 
the appendix.) 

The 

If the losses within the slab a r e  moderate, the integrands of equations (15) a r e  well 
behaved functions and the numerical evaluation of the input admittance is straightforward. 
However, i f  the losses a re  small, it is possible that the integrands may become large 
(or infinite if there is no loss) at discrete values of p. In the limit of zero loss, these 
points become poles of order one, and their residues become a measure of the power 
which is confined within the slab as surface waves. The discussion of this surface-wave 
component is deferred to the appendix. 

NUMERICAL PARAMETERS 

The differential equations (7) were numerically solved as a function of p by using 
the Runge-Kutta method. These numbers were stored on tape and were then used as 
input information for the integration of equations (15). Approximately 250 values of p 
were selected in the interval 0 9 From the analysis of a similar problem (ref. 9), 
it was believed that the termination of the integration at p = 6 would yield a susceptance 
e r r o r  of about 1 percent or  less.  To test this supposition, a numerical check against the 
methods described in reference 3 was initiated, and the results are discussed later in 
this section. Including the time needed to solve the differential equations (7), each admit- 
tance point required approximately 45 minutes of machine time. 

2 6 .  
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The plasma-covered antenna was of immediate interest; therefore, the dielectric 
constant of the inhomogeneous slab was assumed to be given by 

1 + [*I2 € 0  

which is based upon a point application of the Lorentz model (ref. 7, pp. 325-327) of wave 
interaction with electrons in the plasma. With the dielectric constant defined by equa- 
tion (16), the admittance of an aperture covered with a homogeneous plasma was computed 
as a function of ( ~ ~ / w ) ~ 2  0.7 with v/w = 0.4 and zo = 3.5 cm. On the basis of an 

> 0.1, where % is the attenuation constant, it was empirical criterion of e 
believed that the admittance would be independent of thickness over the computational 
range. The criterion was, indeed, satisfied because the slab computations were within 

This agreement w a s  considered to be a satisfactory check of the slab program. 

1 

1- 1 percent of the corresponding half-space calculations performed by R. C. Rudduck. 2 
2 

In order to observe the influence of an inhomogeneous plasma slab on the input 
admittance of the antenna, the series of electron density profiles shown in figure 2 were 
considered. Such profiles are typically produced whenever a plasma flows tangentially 
over a flat plate, as illustrated in the inset of figure 2. The variation of the electron 
density near the ground plane is due to viscous boundary-layer effects. 

With the aperture dimensions fixed at 0.4 X 0.9 inch (inside dimensions of a stan- 
dard RG 52/U waveguide) and a fixed propagating frequency of 10.0 GHz, admittance cal- 

culations were performed as a function of (%r = ( 8 ', 97 X 103 )2Ne,o for each of the 

distributions shown in figure 2. In this way, it was possible to systematically observe 
the changes which can occur in the input admittance as a result of changes both in the 
peak electron density and the extent of the boundary layer. 

The thickness of the slab was again chosen to be 3.5 cm, and calculations w e r e  
performed over a range of parameters which satisfied the empirical criterion. 

1This criterion was deduced from the inspection of similar calculations (ref. 9) 
pertaining to long slots on plasma-covered ground planes. 

2The calculations were made in fulfillment of the grant reported in reference 10 
but were not included in the final published report. 
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RESULTS 

The calculated input admittance for  v/w = 0.4 is presented as a function of peak 
plasma frequency and boundary-layer thickness in  figure 3(a). The curves are labeled 
"profile 2a," "profile 2b," and "profile 2c" to indicate that the computations apply to each 
of the three electron density distributions given in figure 2. 
substantial reduction of the susceptance can occur as the boundary-layer thickness grows 
from zero to  a small fraction of a free-space wavelength. At ( ~ ~ , ~ / w f  = 10, for 
example, the normalized input susceptance resulting from the homogeneous profile 2a is 
-3.37 as opposed to -1.90 from the inhomogeneous profile 2b; yet the half-maximum of 
the electron density of profile 2b occurs only 1 A further, 

30 
but less  pronounced, decrease of the susceptance is noted as the boundary-layer thick- 
ness increases to - XO (profile 2c). 

Figure 3(a) shows that a 

from the ground plane. 

1 
15 

(. Figure 3(a) also shows that the conductance is relatively insensitive to the detailed 
distribution of the plasma if the boundary-layer thickness is = - Xo which indicates 
that homogeneous slab approximation adequately defines the conductance if  the preceding 
condition is satisfied. 

1 
30 

The voltage reflection coefficient for v / w  = 0.4 is given as a function of peak 
plasma frequency in figure 3(b). 
tion coefficient occurs as the boundary-layer thickness increases, which is consistent 
with Taylor's experiments (ref. 4). It is of further interest to note that the slope 

The results show that a definite lowering of the reflec- 

I 
d(wP,O/wy ("w )" d ' r l  decreases in the region 1 2  * 5 10 as the boundary layer grows. The 

determination of electron density within a given percentage of e r r o r  therefore requires 
a more accurate measurement of dlrl as the boundary-layer thickness increases. In 

the limit as 

density. 

d l  r l  - 0, phase information is required to deduce the electron 
d( wP,O/wy 

The collision frequency ratio v/w was reduced to 0.06, and admittance computa- 
tions were performed by using profile 2c of figure 2. Calculations were initiated at 

in accordance with the criterion e 
putations a re  shown in figure 4(a). For  reference, homogeneous-half-space calculations 
(ref. 10) for v /w  = 0.04 a re  also given. 

2.0 where the 3.5-cm slab is thick enough to appear as an infinite half space 
> 0.1. The results of these admittance com- 

(wP,o/w)2 = 

The behavior of the susceptance is similar to the higher collision results of fig- 
ure  3(a), which indicates that the susceptance is relatively independent of the collision 
frequency. On the other hand, the conductance decreases with a decrease in collision 
frequency. 
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It is interesting to note that a finite standoff distance of the plasma prevents gin 
from approaching zero when the collision frequency is low. 
tant, since this small increase in 
reflection coefficient shown in figure 4(b). It is also interesting to note that I I'l is 
relatively insensitive to changes in electron density when ( W ~ , ~ / W ) ~  > 1. It is there- 
fore concluded that phase information is required for the determination of electron den- 
sity when the collision frequency is low and the plasma is overdense. 

This observation is impor- 

gin is the prime reason for the reduction in the 

Finally, it should be noted that the integrand of yTM was  inspected in order to 
note any surface-wave excitation. No evidence of surface waves was observed in the 
region 1 < p < 6. It is possible that a surface-wave pole occurs beyond the range of the 
numerical integration (i.e., 
would be weakly excited. Hence, the observations noted previously a re  not influenced by 
the question of surface waves propagating in the boundary layer. 

p > 6); however, it is believed that such a surface wave 

CONCLUDING REMARKS 

The input admittance expression of a rectangular waveguide-fed aperture antenna 
covered with an inhomogeneous plasma slab has  been formulated, and numerical results 
have shown that a finite boundary layer over the ground plane can significantly influence 
the input admittance of the antenna. In particular, a substantial reduction of the induc- 
tive susceptance occurs as the plasma becomes more overdense and the boundary-layer 
thickness increases from zero to a small fraction of a free-space wavelength. A cor- 
responding decrease in the reflection coefficient occurs for a collision frequency ratio 
v / o  of 0.4. 

When the collision frequency ratio is reduced to approximately 0.06, a decrease in 
the reflection coefficient is also noted. 
decrease in the reflection coefficient is primarily due to the fact that the boundary layer 
prevents the conductance from approaching zero. It is further noted that, when the 
plasma is overdense, the reflection coefficient is relatively insensitive to changes in the 
peak plasma frequency, and phase information is thereby required for plasma 
diagnostics. 

For this low collision frequency ratio, the 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 12, 1967, 
129-01-03-03-23. 
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APPENDIX 

ADMITTANCE EXPRESSIONS FOR HOMOGENEOUS DIELECTRICS 

If the dielectric constant is independent of position, the Helmholtz equation (7) may 
be solved to give \ 

I 
jk, z 

jkz z 

f(z) = Ae + Be 

g(z) = Ce + De 
-jkz z 'J I 

2 for N >O, where 

and for N2 <O, 

The unknown coefficients A, B, C, and D in equations (Al) are determined 

from the boundary conditions (6) at z = zo, and explicit forms of 

may then be substituted into the admittance expressions (15) to give 

f -  
I r 

tan kOzo 

- p 2 +  j 

cos2a! /3 dp da! 
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APPENDIX 

i i n p  cos a!j2 

sin% 

The input admittance is the sum of the foregoing TE and TM components - 
that is, 

Yin = yTE + yTM (A51 

If the slab is lossy, 

and 

and no difficulty is presented in the evaluation of equations (A3) and (A4), other than a 
proper root change of is, in accordance with equations (5). 

If the dielectric slab is nonlossy, the integration over p in equations (A3) and 
(A4) should be broken up in accordance with the root conditions in k:/% and k,II/ko, 
as summarized in tables I and I1 fo r  the following cases: 

Case I: ~2 > 1 

Case 2: o < ~2 < 1 

Case 3: N~ < o 
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APPENDIX 

TE 

N2 > 1 and in the integrand of yTM for N e -1. These poles are of order one and 
occur at those values of (3 = fin which a r e  the roots of the following transcendental 
equations: 

TM component: 

It is noted in the tables that poles occur in the integrands of y and yTM for 
2 

(A64 
T E component: 

1 + J2 tan k o z o / m  = 0 fv 
TM component: 

(N2 > 1) J 

Since the integrand is infinite at p = Pn, it follows that the numerical integration 
of yTE and yTM should be terminated at (3n - 6 and commenced again at Pn + 6, 
where 6 is an arbitrary small number. This procedure also necessitates adding a 
residue contribution at p = pn. The poles are of order one; hence, the residue of y 
for N2 > 1, for example, is given by 

TM 

where 1 < &-, < N, and A(q(3) for p = on is defined in table I. 

From use of equations (A6a), it immediately follows that 

@2_8,2 = s e c 2 k O Z o / w  1 +  tan kozo 
N2ipn2 - 1 

J N ~  - Pn 2 

16 
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1 APPENDIX 

which simplifies the numerator of equation (A7). 
equation (A7) is given by 

The derivative of the denominator of 

From equations (A6a) the first term on the right-hand side of equation (A9) is, by defini- 
tion, zero. Further use  of equations (A6a) gives 

It is now easy to show that 

= -pnkozo sec2kozo\/N2 - p2 [ 1 + (N2 - 1) s i n ( 2 k O z O / ~ ~  (All) 
- ’) (2k0z0/-) 

and. that the residue is 

L 
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APPENDIX 

Therefore, the pole contribution is 

4 (k,a) (k,b).rrN2 

X 

Jo L J 

The right-hand side of equation (A13) is a real  number, contributing only to the 
conductance, and is a measure of the amount of power which remains trapped in the 
dielectric sheet as a surface wave. 

The onset of a TM surface wave occurs when p = 1 and tan kozo/N2 - p2 is a 
positive number, that is, where 

m.rr = k z o { G  0 

The total surface-wave contribution is given by 

(m = 0, 1, 2, . . .) (A14) 

n 

where the sum includes all the poles as determined from equation (A6). The total TM 
admittance is therefore given by 

where the explicit functional forms of F1, Fa, and F3 a r e  given in table I. 

and y TM ]N2,0 is similarly 
lN2>1 The surface-wave conductance for yTE 

derived, and explicit forms a re  given in table III. 

If a large number of surface-wave poles exist in the region 1 < p < N, F2(P) 
becomes a rapidly varying function. As a consequence, it may be difficult to evaluate the 
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APPENDIX 

principal part  of the integral. If such difficulties are encountered, it would be wise to 
convert the integration over the real axis to one along the branch cut, as indicated in 
figure 5. 3 

If the medium is inhomogeneous and nonlossy, one should inspect g'(P,O) and 
f(p,O). If they go to zero, a surface wave has been excited, and one should numerically 

compute the values of 

residue contribution. 

f '  (Pn,O) 
and numerically enter the d 

B=Pn 

31t should be noted that only the forward wave poles are included when the contour 
is closed in the upper half plane. When the contour is closed in the lower half plane, the 
backward wave poles must be included. These backward wave poles and the branch line 
which appear in the lower half plane are not shown in figure 5. 
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TABLE 11.- TE COMPONENT OF ADMITTANCE EXPRESSION 

1 Preferred form for the numerical 
evaluation of vTE ! j Comments 

I I l(1) Poles of F~(r3) occur where I I I 

+ - 1 ~ kazo@- 2 (2) Principal parts of the inte- 
grals which contain Fz@) 
and F3(0) contribute only 

@3 
I to the susceptance. 

the range of integration. 

(2) The integral which contains 
F3(8) contributes only to 
the susceptance. 

dsz-1 tanh k , , z o d W  



TABLE m.- TE AND TM SURFACE-WAVE CONDUCTANCE EXPRESSIONS 

Comments Transcendental equation for the 
location of the roots pn Expression for surface-wave conductance 

Case 1: (1) The sum on n of gs includes all finite 
N2 > 1 roots of the transcendental equation. 

1 nesses in wavelengths 2 = 0, - 
1 3 * 2 f i '  

JKq 2 d K '  

$- N2dF (2) The onset of a surface wa;e occurs at thick- tan kOzo 
Bn - im 

-- - * 

(1) The sum on n of g, includes all finite 
roots of the transcendental equation. 

(2) The onset of a surface wave occurs at thick- so" A(a,&)sin2a da! 
nesses in wavelengths 5 = - 1 

kg 4 f i '  

4 J G 2  4 J G '  

Q 4 f i .  

3 5 
tank$, J-2- N2 &? 

- -  JS -- . . . .  
(3) No TE surface waves occur for z o < L  

Case 3 : 
, N 2 < 0  

L 
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Figure 1.- Rectangular aperture coated with inhomogeneous plasma. 
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Figure 3.- Admittance and reflection coefficient of rectangular aperture antenna, coated with an inhomogeneous plasma for u/u = 0.4. 
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(a) Input admittance. 

Figure 4.- Admittance and reflection coefficient of rectangular aperture antenna coated with an inhomogeneous plasma for 
low collision frequency. 

28 



v / w  = 0.04 fo r  homogeneous half space 
v / w  = 0.06 fo r  profile 2 c 

(b) Voltage reflection coefficient. 

Figure 4.- Concluded. 
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